Key Stage 5 Mathematics: Curriculum Map

Year I 2: Cycle of Topics Per Year

I. Algebraic

Expressions,
Quadratics,
Equations \& Inequalities
2. Graphs \&

Transformations, Data Collection, Measure of location \& spread, Straight Line Graphs, Modelling in Mechanics
3. Constant Acceleration, Circles, Algebraic Methods, Trigonometic Ratios, Representations of Data
6. Integration, Hypothesis Testing, Exponentials \& Logorithins, Variable Acceleration

Year 12 Mathematics

Pupils will be working towards the Edexcel A Level Maths qualification. Pupils will continue to build on the fundamental mathematical skills developed in KS4, focusing on their depth of mathematical knowledge and their ability to prove and accurately demonstrate their mathematical skills. The Edexcel GCSE specification focuses on six core sub-topics of mathematics: Number, Algebra, Ratio, Geometry, Probability and Statistics, in varying proportions. The amount of time dedicated to each sub-topic in class is proportional to the percentage incorporated into the examination. Pupils will have continual exposure to exam-style questions with consistent modelling and reference to the mark schemes to ensure that pupils are aware of the requirements of each question.

Topic of Learning
Half-Termly Overview: Knowledge and Skills
Unit I: Algebraic Expressions

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketch graphs; logical deduction; precise statements involving correct use of symbols and connecting language including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Comprehend and critique mathematical arguments, proofs and justifications of methods and formulae, including those relating to applications of mathematics.
- Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion and use methods of proof, including proof by deduction, proof by exhaustion and disproof by counter example proof by contradiction (including proof of the irrationality of $\sqrt{ } 2$ and the infinity of

Key Stage 5 Mathematics: Curriculum Map

primes, and application to unfamiliar proofs).

Unit 2: Quadratics

By the end of the unit, pupils should be able to:

- Work with quadratic functions and their graphs; the discriminant of a quadratic function, including the conditions for real and repeated roots; completing the square; solution of quadratic equations including solving quadratic equations in a function of the unknown.
- Understand the effect of simple transformations on the graph of $y=f(x)$ including sketching associated graphs: $y=$ $a f(x), y=f(x)+a, y=f(x+a), y=f(a x)$ and combinations of these transformations.

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Understand and use language and symbols associated with set theory, as set out in the glossary. Apply to solutions of inequalities (see B5 [g])
- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Solve linear and quadratic inequalities in a single variable and interpret such inequalities graphically, including inequalities with brackets and fractions. Express solutions through correct use of 'and' and 'or', or through set notation. Represent linear and quadratic inequalities such as $y>x+I$ and $y=a x 2+b x+c$ graphically.

ARNOLD LODGE
4-18 yrs Co-educational Independent Day School

Key Stage 5 Mathematics: Curriculum Map

Unit 4: Graphs and transformations

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Understand and use graphs of functions; sketch curves defined by simple equations including polynomials, the modulus of a linear function $y=a / x$ and $y=a / x 2$ and (including their vertical and horizontal asymptotes); interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations Understand and use proportional relationships and their graphs.
- Understand the effect of simple transformations on the graph of $y=f(x)$ including sketching associated graphs: $y=a f(x)$, $y=f(x)+a, y=f(x+a), y=f(a x)$, and combinations of these transformations.

By the end of the unit, pupils should be able to:

- Evaluate, including by making reasoned estimates, the accuracy or limitations of solutions, including those obtained using numerical methods.
- Understand and use the terms 'population' and 'sample'. Use samples to make informal inferences about the population. Understand and use sampling techniques, including simple random sampling and opportunity sampling. Select or critique sampling techniques in the context of solving a statistical problem, including understanding that different samples can lead to different conclusions about the population.

ARNOLD LODGE
4-18 yrs Co-educational Independent Day School

Key Stage 5 Mathematics: Curriculum Map

Unit 6: Measure of location and spread

By the end of the unit, pupils should be able to:

- Understand and use mathematical language and syntax as set out in the glossary.
- Interpret measures of central tendency and variation, extending to standard deviation. Be able to calculate standard deviation, including from summary statistics.
- Recognise and interpret possible outliers in data sets and statistical diagrams. Select or critique data presentation techniques in the context of a statistical problem. Be able to clean data, including dealing with missing data, errors and outliers.

Unit 7: Straight line graphs

By the end of the unit, pupils should be able to:

- Understand and use graphs of functions; sketch curves defined by simple equations including polynomials, $y=a / x$ and y $=\mathrm{a} / \times 2$ and (including their vertical and horizontal asymptotes); interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations. Understand and use proportional relationships and their graphs. - Understand and use the equation of a straight line, including the forms $y-y I=m(x-x I)$ and $a x+b y+c=0$; gradient conditions for two straight lines to be parallel or perpendicular.
- Be able to use straight line models in a variety of contexts.

Unit 8: Modelling in mechanics

Unit 9: Constant acceleration
HT3

By the end of the unit, pupils should be able to:

- Understand and use mathematical language and syntax as set out in the glossary.
- Understand and use fundamental quantities and units in the S.I. system: length, time, mass. Understand and use derived quantities and units: velocity, acceleration, force, weight, moment.

By the end of the unit, pupils should be able to:

- Evaluate, including by making reasoned estimates, the accuracy or limitations of solutions, including those obtained using numerical methods.
- Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model

Key Stage 5 Mathematics: Curriculum Map

4-18 yrs Co-educational Independent Day School

	constructed or selected by the student). - Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). - Understand that a mathematical model can be refined by considering its outputs and simplifying assumptions; evaluate whether the model is appropriate. - Understand, use and derive the formulae for constant acceleration for motion in a straight line; extend to 2 dimensions using vectors.
Unit I 0: Circles	By the end of the unit, pupils should be able to: - Understand and use the coordinate geometry of the circle including using the equation of a circle in the form $(x-a) 2+$ $(y-b) 2=r 2$; completing the square to find the centre and radius of a circle; use of the following properties: the angle in a semicircle is a right angle the perpendicular from the centre to a chord bisects the chord the radius of a circle at a given point on its circumference is perpendicular to the tangent to the circle at that point.
Unit I I: Algebraic methods	By the end of the unit, pupils should be able to: - Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable. - Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics. - Solve simultaneous equations in two variables by elimination and by substitution, including one linear and one quadratic equation. - Understand and use graphs of functions; sketch curves defined by simple equations including polynomials, the modulus of a linear function, $y=a / x$ and $y=a / x 2$ and (including their vertical and horizontal asymptotes); interpret algebraic solution of equations graphically; use intersection points of graphs to solve equations Understand and use proportional relationships and their graphs.

Key Stage 5 Mathematics: Curriculum Map

4-18 yrs Co-educational Independent Day School

	Unit I2: Trigonometric ratios	By the end of the unit, pupils should be able to: - Understand and use mathematical language and syntax as set out in the glossary. - Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics. - Understand the effect of simple transformations on the graph of $y=f(x)$ including sketching associated graphs: $y=a f(x)$, $y=f(x)+a, y=f(x+a), y=f(a x)$, and combinations of these transformations. - Use of functions in modelling, including consideration of limitations and refinements of the models. - Understand and use the definitions of sine, cosine and tangent for all arguments; the sine and cosine rules; the area of a triangle in the form $\mathrm{I} / 2 \mathrm{ab} \sin \mathrm{C}$. Work with radian measure, including use for arc length and area of sector. - Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity. Know and use exact values of \sin and \cos for $0, \pi / 6, \pi / 4, \pi / 3, \pi / 2$ and π and multiples thereof, and exact values of \tan for $0, \pi / 6, \pi / 4, \pi / 3$ and π and multiples thereof. \bullet Understand and use $\tan \theta=\sin \theta / \cos \theta$, Understand and use $\sin 2 \theta+\cos 2 \theta=1 . \sec 2 \theta=1+\tan 2 \theta$ and $\operatorname{cosec} 2 \theta=1+$ $\cot 2 \theta$. - Solve simple trigonometric equations in a given interval, including quadratic equations in \sin , \cos and tan and equations involving multiples of the unknown angle.
	Unit 13: Representations of data	By the end of the unit, pupils should be able to: - Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics. - Interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency. - Connect to probability distributions. - Recognise and interpret possible outliers in data sets and statistical diagrams. Select or critique data presentation techniques in the context of a statistical problem. Be able to clean data, including dealing with missing data, errors and outliers.
HT4	Unit 14: Correlation	By the end of the unit, pupils should be able to: - Evaluate, including by making reasoned estimates, the accuracy or limitations of solutions, including those obtained using numerical methods. - Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems,

Key Stage 5 Mathematics: Curriculum Map

	including in mechanics. - Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student). - Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). - Interpret scatter diagrams and regression lines for bivariate data, including recognition of scatter diagrams which include distinct sections of the population (calculations involving regression lines are excluded). Understand informal interpretation of correlation. Understand that correlation does not imply causation. - Recognise and interpret possible outliers in data sets and statistical diagrams. Select or critique data presentation techniques in the context of a statistical problem. Be able to clean data, including dealing with missing data, errors and outliers.
Unit I5: Binomial expansion	By the end of the unit, pupils should be able to: - Evaluate, including by making reasoned estimates, the accuracy or limitations of solutions, including those obtained using numerical methods. - Understand and use the binomial expansion of $(a+b x) n$ for positive integer n; the notations n ! and $n C r$; link to binomial probabilities. Extend to any rational n, including its use for approximation; be aware that the expansion is valid for $\|b x / a\|<1$. (Proof not required).
Unit I 6: Trigonometric identities and equations	By the end of the unit, pupils should be able to: - Understand and use $\tan \theta=\sin \theta / \cos \theta$. - Understand and use $\sin 2 \theta+\cos 2 \theta=I ; \sec 2 \theta=I+\tan 2 \theta$ and $\operatorname{cosec} 2 \theta=I+\cot 2 \theta$.
Unit I 7: Probability	By the end of the unit, pupils should be able to: - Understand and use mathematical language and syntax as set out in the glossary. - Understand and use language and symbols associated with set theory, as set out in the glossary. Apply to solutions of inequalities. (see B5 [g]) - Understand and use mutually exclusive and independent events when calculating probabilities. Link to discrete and continuous distributions. - Interpret diagrams for single-variable data, including understanding that area in a histogram represents frequency.

Key Stage 5 Mathematics: Curriculum Map

Connect to probability distributions.

- Understand and use simple, discrete probability distributions (calculation of mean and variance of discrete random
variables is excluded), including the binomial distribution, as a model; calculate probabilities using the binomial
distribution.

Unit I 8: Conditional probability

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Understand and use mathematical language and syntax as set out in the glossary.
- Understand and use language and symbols associated with set theory, as set out in the glossary. Apply to solutions of inequalities. (see B5 [g])
- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Understand a situation in context into a mathematical model, making simplifying assumptions.
- Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student).
- Understand and use conditional probability, including the use of tree diagrams, Venn diagrams, two-way tables.
- Understand and use the conditional probability formula $P(A \mid B)=P(A \circ B) \div P(B)$.

Unit I9: Differentiation

By the end of the unit, pupils should be able to:

- Recognise the underlying mathematical structure in a situation and simplify and abstract appropriately to enable problems to be solved.
- Translate a situation in context into a mathematical model, making simplifying assumptions.
- Understand and use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a general point (x, y); the gradient of the tangent as a limit; interpretation as a rate of change; sketching the gradient function for a given curve; second derivatives; differentiation from first principles for small positive integer powers of x and for $\sin x$ and $\cos x$.
- Understand and use the second derivative as the rate of change of gradient; connection to convex and concave sections of curves and points of inflection.
- Apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points, points of inflexion. Identify where functions are increasing or decreasing.

Key Stage 5 Mathematics: Curriculum Map

Unit 20: Vectors

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Use vectors in two dimensions and three dimensions.
- Calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form.
- Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.
- Understand and use position vectors; calculate the distance between two points represented by position vectors.
- Use vectors to solve problems in pure mathematics and in context, including forces and kinematics.

Unit 2 I: Forces \& Motion

By the end of the unit, pupils should be able to:

- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Translate a situation in context into a mathematical model, making simplifying assumptions.
- Understand that a mathematical model can be refined by considering its outputs and simplifying assumptions; evaluate whether the model is appropriate.
- Understand and use modelling assumptions.
- Understand and use the language of kinematics: position; displacement; distance travelled; velocity; speed; acceleration.
- Understand, use and interpret graphs in kinematics for motion in a straight line: displacement against time and interpretation of gradient; velocity against time and interpretation of gradient and area under the graph.

Unit 22: Statistical distributions

By the end of the unit, pupils should be able to:

- Recognise the underlying mathematical structure in a situation and simplify and abstract appropriately to enable problems to be solved.
- Translate a situation in context into a mathematical model, making simplifying assumptions.
- Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student).
- Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student).

Key Stage 5 Mathematics: Curriculum Map

- Understand that a mathematical model can be refined by considering its outputs and simplifying assumptions; evaluate whether the model is appropriate.
- Understand and use modelling assumptions.
- Use of functions in modelling, including consideration of limitations and refinements of the models.
- Understand and use simple, discrete probability distributions (calculation of mean and variance of discrete random variables is excluded), including the binomial distribution, as a model; calculate probabilities using the binomial distribution.

Unit 23: Integration

By the end of the unit, pupils should be able to:

- Understand and use mathematical language and syntax as set out in the glossary.
- Know and use the Fundamental Theorem of Calculus.
- Integrate xn (excluding $\mathrm{n}=-\mathrm{I}$), and related sums, differences and constant multiples. Integrate $\mathrm{ekx}, \mathrm{l} / \mathrm{x}, \sin \mathrm{kx}$ \& $\cos \mathrm{kx}$ and related sums, differences and constant multiples.

By the end of the unit, pupils should be able to:

- Understand and use mathematical language and syntax as set out in the glossary.
- Understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, test statistic, I-tail test, 2-tail test, critical value, critical region, acceptance region, p -value; extend to correlation coefficients as measures of how close data points lie to a straight line and be able to interpret a given correlation coefficient using a given p-value or critical value (calculation of correlation coefficients is excluded).

Unit 25: Exponentials \&
Logarithms

By the end of the unit, pupils should be able to:

- Recognise the underlying mathematical structure in a situation and simplify and abstract appropriately to enable problems to be solved.
- Translate a situation in context into a mathematical model, making simplifying assumptions.
- Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student).
- Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student).

Year 13: Cycle of Topics Per Year

I. Proof, Algebraic	2. Regression,	3. Large Data Set,	4. Trigonometry \&	5. Applications of	6. Application to
Methods, Functions	Correlation \&	Binomial Expansion,	Modelling, Projectiles,	Force, Further	Exam Questions and
\& Graphs,	Hypothesis Testing,	Trigonometric	Differentiation, Normal	Kinematics, Parametric	Revision
	Sequences and Series,	Functions, Forces \&	Distribution,	Equations, Vectors,	
	Moments, Radians	Friction,	Integration	Numerical Methods	

Year 13 Mathematics

Pupils will be working towards the Edexcel A Level Maths qualification. Pupils will continue to build on the fundamental mathematical skills developed in KS4, focusing on their depth of mathematical knowledge and their ability to prove and accurately demonstrate their mathematical skills. The Edexcel GCSE specification focuses on six core sub-topics of mathematics: Number, Algebra, Ratio, Geometry, Probability and Statistics, in varying proportions. The amount of time dedicated to each sub-topic in class is proportional to the percentage incorporated into the examination. Pupils will have continual exposure to exam-style questions with consistent modelling and reference to the mark schemes to ensure that pupils are aware of the requirements of each question.

Unit I: Proof

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Comprehend and critique mathematical arguments, proofs and justifications of methods and formulae, including those relating to applications of mathematics use methods of proof.
- Understand and use the structure of mathematical proof, proceeding from given assumptions through a series of logical steps to a conclusion; use methods of proof, including proof by deduction, proof by exhaustion. Disproof by counter example. Proof by contradiction (including proof of the irrationality of $\sqrt{ } 2$ and the infinity of primes, and application to unfamiliar proofs).

Key Stage 5 Mathematics: Curriculum Map

4-18 yrs Co-educational Independent Day School

Key Stage 5 Mathematics: Curriculum Map

Unit 4: Regression, correlation and

 hypothesis testingUnit 5: Sequences and series

By the end of the unit, pupils should be able to:

- Understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, test statistic, I-tail test, 2-tail test, critical value, critical region, acceptance region, pvalue; extend to correlation coefficients as measures of how close data points lie to a straight line and be able to interpret a given correlation coefficient using a given p-value or critical value (calculation of correlation coefficients is excluded).

By the end of the unit, pupils should be able to:

- Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student).
- Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student).
- Work with sequences including those given by a formula for the nth term and those generated by a simple relation of the form $x n+I=f(x n)$; increasing sequences; decreasing sequences; periodic sequences.
- Use sequences and series in modelling

ARNOLD LODGE
4-18 yrs Co-educational Independent Day School

Key Stage 5 Mathematics: Curriculum Map

Unit 6: Moments	By the end of the unit, pupils should be able to: - Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics. - Translate a situation in context into a mathematical model, making simplifying assumptions. - Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student). - Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). - Understand and use fundamental quantities and units in the S.I. system: length, time, mass. Understand and use derived quantities and units: velocity, acceleration, force, weight, moment. - Understand and use moments in simple static contexts.
Unit 7: Radians	By the end of the unit, pupils should be able to: - Understand and use mathematical language and syntax as set out in the glossary. - Evaluate, including by making reasoned estimates, the accuracy or limitations of solutions, including those obtained using numerical methods. - Understand and use the definitions of sine, cosine and tangent for all arguments; the sine and cosine rules; the area of a triangle in the form $\mathrm{I} / 2 \mathrm{ab} \sin \mathrm{C}$. Work with radian measure, including use for arc length and area of sector. - Understand and use the standard small angle approximations of sine, cosine and tangent: $\sin \theta \approx \theta ; \cos \theta \approx 1-\theta 2 / 2 ; \tan \theta \approx \theta$ where θ is in radians. - Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity. Know and use exact values of \sin and \cos for $0, \pi / 6, \pi / 4, \pi / 3, \pi / 2$ and π and multiples thereof, and exact values of \tan for $0, \pi / 6, \pi / 4, \pi / 3$ and π and multiples thereof.

ARNOLD LODGE
4-18 yrs Co-educational Independent Day School

Key Stage 5 Mathematics: Curriculum Map

	Unit II: Forces \& Friction
	Unit I2: Trigonometry \& Modelling
HT4	

By the end of the unit, pupils should be able to:

- Recognise the underlying mathematical structure in a situation and simplify and abstract appropriately to enable problems to be solved.
- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Translate a situation in context into a mathematical model, making simplifying assumptions.
- Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student).
- Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student).
- Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces.
- Understand and use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors); extend to situations where forces need to be resolved (restricted to 2 dimensions).
- Understand and use addition of forces; resultant forces; dynamics for motion in a plane.
- Understand and use the $F \leq \mu R$ model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and statics.

By the end of the unit, pupils should be able to:

- Understand and use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a general point (x, y); the gradient of the tangent as a limit; interpretation as a rate of change; sketching the gradient function for a given curve; second derivatives; differentiation from first principles for small positive integer powers of x and for $\sin x$ and $\cos x$. Understand and use the second derivative as the rate of change of gradient; connection to convex and concave sections of curves and points of inflection.
- Differentiate xn , for rational values of n , and related constant multiples, sums and differences. Differentiate ekx and akx , $\sin \mathrm{kx}$, $\cos \mathrm{kx}$, tan kx and related sums, differences and constant multiples. Understand and use the derivative of $\ln \mathrm{x}$.

ARNOLD LODGE
4-18 yrs Co-educational Independent Day School

Key Stage 5 Mathematics: Curriculum Map

Unit 13: Projectiles

Unit 14: Differentiation

By the end of the unit, pupils should be able to:

- Recognise the underlying mathematical structure in a situation and simplify and abstract appropriately to enable problems to be solved.
- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Translate a situation in context into a mathematical model, making simplifying assumptions.
- Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student).
- Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student).
- Understand and use modelling assumptions.
- Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces.
- Use vectors to solve problems in pure mathematics and in context, including forces and kinematics.
- Model motion under gravity in a vertical plane using vectors; projectiles.

By the end of the unit, pupils should be able to:

- Construct and present mathematical arguments through appropriate use of diagrams; sketching graphs; logical deduction; precise statements involving correct use of symbols and connecting language, including: constant, coefficient, expression, equation, function, identity, index, term, variable.
- Understand, interpret and extract information from diagrams and construct mathematical diagrams to solve problems, including in mechanics.
- Understand and use the derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a general point (x, y); the gradient of the tangent as a limit; interpretation as a rate of change; sketching the gradient function for a given curve; second derivatives; differentiation from first principles for small positive integer powers of x and for $\sin x$ and $\cos x$. Understand and use the second derivative as the rate of change of gradient; connection to convex and concave sections of curves and points of inflection.
- Apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points, points of inflexion. Identify where functions are increasing or decreasing.
- Understand and use the Normal distribution as a model; find probabilities using the Normal distribution. Link to histograms, mean, standard deviation, points of inflection and the binomial distribution.

ARNOLD 4-18 yrs Co-educational	$\bigcirc \bigcirc \underbrace{}_{\text {dent Day School }} \mathrm{C}$
Unit 15: Normal Distribution	By the end of the unit, pupils should be able to: - Understand and use mathematical language and syntax as set out in the glossary. - Translate a situation in context into a mathematical model, making simplifying assumptions. - Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). - Understand and use the Normal distribution as a model; find probabilities using the Normal distribution. Link to histograms, mean, standard deviation, points of inflection and the binomial distribution.
Unit 16: Integration	By the end of the unit, pupils should be able to: - Integrate xn (excluding $\mathrm{n}=-\mathrm{I}$), and related sums, differences and constant multiples. Integrate ekx and related sums, differences and constant multiples. Integrate I / x and related sums, differences and constant multiples. Integrate $\sin \mathrm{kx} \& \cos \mathrm{kx}$ and related sums, differences and constant multiples. - Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves. - Understand and use integration as the limit of a sum. - Carry out simple cases of integration by substitution and (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated) integration by parts; (integration by parts includes more than one application of the method but excludes reduction formulae) understand these methods as the inverse processes of the chain and product rules respectively.

	ARNOLD 4-18 yrs Co-educational	Key Stage 5 Mathematics: Curriculum Map Day School
HT5	Unit I7: Applications of force	By the end of the unit, pupils should be able to: - Translate a situation in context into a mathematical model, making simplifying assumptions. - Use a mathematical model with suitable inputs to engage with and explore situations (for a given model or a model constructed or selected by the student). - Interpret the outputs of a mathematical model in the context of the original situation (for a given model or a model constructed or selected by the student). - Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces. - Use vectors to solve problems in pure mathematics and in context, including forces and kinematics. - Understand and use Newton's second law for motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2-D vectors); extend to situations where forces need to be resolved (restricted to 2 dimensions).
	Unit 18: Further Kinematics	By the end of the unit, pupils should be able to: - Use vectors to solve problems in pure mathematics and in context, including forces and kinematics. - Use calculus in kinematics for motion in a straight line: $v=d r / d t, a=d v / d t, r=\int v d t, a=\int v d t$; extend to 2 dimensions using vectors.

4-18 yrs Co-educational Independent Day School

Unit 19: Parametric Equations	
	Unit 20: Vectors

By the end of the unit, pupils should be able to:

- Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms.
- Use parametric equations in modelling in a variety of contexts.

By the end of the unit, pupils should be able to:

- Understand and use mathematical language and syntax as set out in the glossary.
- Understand, use and derive the formulae for constant acceleration for motion in a straight line; extend to 2 dimensions using vectors.

By the end of the unit, pupils should be able to:

- Evaluate, including by making reasoned estimates, the accuracy or limitations of solutions, including those obtained using numerical methods.
- Solve equations approximately using simple iterative methods; be able to draw associated cobweb and staircase diagrams. Solve equations using the Newton-Raphson method and other recurrence relations of the form $\mathrm{xn}+\mathrm{I}=\mathrm{g}(\mathrm{xn})$. Understand how such methods can fail.
- Use numerical methods to solve problems in context.

Application to Exam Questions

Application to Exam Questions and Revision

